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In this talk, we will present a QCD factorization theorem for the semi-inclusive deep-
inelastic scattering with hadrons in the current fragmentation region detected at low
transverse momentum.

There has been considerable experimental and theoretical interest in semi-inclusive hadron
production in deep inelastic scattering (SIDIS) processes. For example, by studying the
polarized and unpolarized SIDIS, one will be able to identify the sea quark distribution
and polarization in nucleon, and the experimental results from the HERMES collabora-
tion have revealed nontrivial sea structure in nucleon [1]. More recently, SIDIS opened a
new window to study the transverse momentum dependent (TMD) parton distributions and
fragmentation functions from the low transverse momentum hadron production. The trans-
verse momentum distribution of the final state hadron is directly related to the transverse
momentum dependence of the parton distributions and fragmentation. These studies will
provide new opportunities to explore the partonic structure of nucleon, especially the three-
dimension distribution of partons inside nucleon. The DIS experiments, including HERMES,
COMPAS, and JLab Hall B collaborations, have studied various azimuthal asymmetries in
SIDIS. In particular, the HERMES collaboration found sizable single spin asymmetries in
these processes involving nontrivial QCD effects and hadron structure.

On the theory side, there has been great progress in the last few years too. In this short
talk, it is impossible to cover all these important physics. Rather, I would like to focus on one
of the questions concerning applying the QCD to the description of the semi-inclusive DIS,
in particular, the QCD factorization for SIDIS. Unlike the inclusive DIS process, SIDIS is
more involved because of additional hadron measurement in the final state. We can classify
the SIDIS processes into three different categories. First, if we integrate out the transverse
momentum of the final state hadron, these SIDIS will be similar to the inclusive DIS, and
a collinear factorization is applicable. The cross section can be written as a convolution of
the integrated parton distribution and fragmentation function and the hard partonic cross
section which can be calculated from perturbative QCD. Second class is the large trans-
verse momentum SIDIS. When transverse momentum is large enough (in order of Q, the
virtuality of the virtual photon), again a collinear factorization shall be used to analyze the
cross section. The third class is the low transverse momentum hadron production, where a
collinear factorization approach may not be applicable because the transverse momentum of
the final state hadron is small compared to the hard scale Q. In order to describe this class
of processes, we have to introduce a new factorization theorem, involving the transverse
momentum dependent parton distribution and fragmentation functions. Rigorous theoret-
ical studies in this direction started from the classical work on semi-inclusive processes in
e+e− annihilation by Collins and Soper [2], where a QCD factorization was proved, and
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non-perturbative transverse-momentum-dependent (TMD) parton distributions and frag-
mentation functions were introduced [2, 3]. In the past few years, gauge properties of the
TMD parton distributions have been investigated [4, 5, 6]. More recently, the factorization
theorems for the semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan processes
have been re-examined in the context of the gauge-invariant definitions [7, 8].

The main result of [7] is a QCD factorization argument for the SIDIS cross section at low
transverse momentum, accurate up to the power corrections (P 2

h⊥/Q2)n and to all orders
in perturbation theory. For example, the leading spin-independent structure function for
SIDIS can be factorized as follows,

F (xB , zh, Ph⊥, Q2) =
∑

q=u,d,s,...

e2
q

∫
d2~k⊥d2~p⊥d2~̀⊥

×q
(
xB , k⊥, µ2, xBζ, ρ

)
q̂T

(
zh, p⊥, µ2, ζ̂/zh, ρ

)
S(~̀⊥, µ2, ρ)

×H
(
Q2, µ2, ρ

)
δ2(zh

~k⊥ + ~p⊥ + ~̀⊥ − ~Ph⊥) , (1)

where µ is a renormalization (and collinear factorization) scale; ρ is a gluon rapidity cut-off
parameter; the µ and ρ dependence cancels among various factors. In a special system of
coordinates in which xBζ = ζ̂/zh, one has ζ2x2

B = ζ̂2/z2
h = Q2ρ. The physical interpre-

tation of the factors are as follows: q is TMD quark distribution function; q̂ is the TMD
quark fragmentation function depending on; H represents the contribution of parton hard
scattering and is a perturbation series in αs; and, finally, the soft factor S comes from soft
gluon radiations and is defined by a matrix element of Wilson lines in QCD vacuum.

We emphasize that the above factorization formula is valid in the limit of Q2 →∞, and
all higher order corrections in terms of Ph⊥/Q have been neglected. In the factorization
formula, the transverse momentum dependent parton distribution plays the central role.
Let us discuss these distributions first. Consider a hadron, a nucleon for example, with
four-momentum P . Let (xP+,~k⊥) represent the momentum of a parton (quark or gluon) in
the hadron. In a non-singular gauge (e.g. Feynman gauge), the TMD parton distributions
can be defined through the following matrix [2, 5],

M±(x, k⊥, µ, xζ, ρ) = p+

∫
dξ−

2π
e−ixξ−P+

∫
d2~b⊥
(2π)2

ei~b⊥·~k⊥ (2)

×
〈
PS

∣∣∣ψq(ξ
−,~b⊥)L†v(±∞; ξ−,~b⊥)Lv(±∞; 0)ψq(0)

∣∣∣ PS
〉

.

The +(−) superscript is appropriate for DIS (Drell-Yan) process [5, 6]. vµ is a time-like
dimensionless (v2 > 0) four-vector with zero transverse components (v−, v+,~0) and v− À
v+. Thus the vµ is a quasi light-cone vector, approaching nµ. The variable ζ2 denotes the
combination (2P · v)2/v2 = ζ2. Lv is a gauge link along vµ,

Lv(±∞; ξ) = exp
(
−ig

∫ ±∞

0

dλv ·A(λv + ξ)
)

. (3)

Here the non-light-like gauge link is introduced to regulate the light-cone singularities. The
TMD parton distribution is defined as such to absorb the collinear divergence in the partonic
processes. This has been checked by an explicit calculation at one-loop order [7], where the
soft divergence associated with soft gluons in the TMDs has been cancelled out in the total
result, and we are left with only the collinear singularity.
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Figure 1: One-loop real diagrams for SIDIS.

It is instructive to demonstrate this fac-
torization at one-loop order. For example,
the one-loop real corrections to the struc-
ture function F are shown in Fig. 1. There
is no contribution to the hard scattering ker-
nel from any of these diagrams. In Fig. 1a,
the gluon radiation generates a transverse-
momentum for the struck quark. There is
no contribution from the fragmentation function because the contribution from the final
state with a gluon parallel to final state quark is power suppressed. Therefore, the diagram
must be factorizable into the parton distribution. Similarly for Fig. 1b, which again can be
reproduced by the factorization formula with the one-loop fragmentation function and the
soft factor S, and the tree-level parton distribution and the hard part. For Fig. 1c and its
hermitian conjugate, we find three distinct contributions: where the first term corresponds
to a gluon collinear to the initial quark, the second term a gluon collinear to the final state
quark, and the third term a soft gluon. All these terms are reproduced by the factorization
formula with one-loop parton distribution, fragmentation function, and the soft factor. The
virtual contribution can be analyzed accordingly [7].

For arguments toward a factorization to all orders, we follow the discussions in [2, 7].
The procedure for this argument is the following. First, for any high order Feynman dia-
grams, using the power counting rules identifies the leading region contributions [9]. The
leading regions clearly separate the soft, collinear, and hard gluons’ contributions to the
cross section (the cut diagram), where the soft gluons are only attached to the jet functions
(parton distributions and/or fragmentation functions); hard gluons are included in the hard
part; collinear gluons attached the jet functions to the hard part. On top of that, we can
further use the Grammer-Yennie approximation to factorize out the soft factor, which can be
expressed as matrix element of Wilson lines [2, 7]. The Ward Identity will be used to further
factorize the collinear gluons from the hard part, which results in a Wilson line (gauge link)
association in the definition of the jet functions. The variation of the gauge link gives the
Collins-Soper evolution equation for the jet functions [2]. After these procedures, the hard
part only contains hard gluons, which can be calculated from perturbative QCD.

The above factorization argument is also applicable to the spin and azimuthal depen-
dent SIDIS [7] at leading order of 1/Q. In particular, the Sivers-type single transverse
spin asymmetry in SIDIS has been studied in [10], where the gluon radiation generates
large transverse momentum Sivers function and fragmentation. When combining both
contributions with the soft factor, the Sivers-type SSA in SIDIS can be factorized into
the similar factorization formula as the above. The calculations of [10] are based one
collinear factorization approach, and the SSA comes from the twist-three quark-gluon cor-
relation function as we show in the diagram of Fig. 2(a). At large transverse momen-
tum Ph⊥ ∼ Q, the SSA in of higher-twist, and will be suppressed by 1/Ph⊥. At small
Ph⊥ ¿ Q, a factorization in terms of TMD parton distribution applies [7], involving
in case of the SSA the Sivers functions. If Ph⊥ is much larger than ΛQCD, the depen-
dence of these functions on transverse momentum can be computed using QCD perturba-
tion theory. At the same time, the result obtained from the diagram Fig. 2(a) can also
be extrapolated into the regime ΛQCD ¿ Ph⊥ ¿ Q, and it can be shown that the re-
sult of this extrapolation is identical to that obtained using the TMD approach [10]. In
this sense, the two mechanisms widely held responsible for the observed SSAs are unified.
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Figure 2: The factorization arguments for the consistency be-
tween the two mechanisms: left is a generic Feynman diagram in
the twist-three quark-gluon correlation formalism; and the right
is the corresponding TMD factorization form decomposed into
different regions, (a) the Sivers function, (b) the fragmentaion
function, and (c) the soft factor.

Again, the factoriza-
tion arguments we used
in the analysis for the
spin-average cross sec-
tion is crucial to obtain
this result. Especially,
according to the radia-
tion gluon’s momentum
in Fig. 2(a), the contri-
bution can be factorized
into the different factors
in the factorization for-
mula. For example, if the
radiation gluon is parallel to the polarized proton, the contribution can be factorized into
the spin-dependent Sivers function as we show in Fig. 2(b); if it is parallel to the final state
hadron, the contribution can be factorized into the unpolarized quark fragmentation func-
tion (Fig. 2(c)); if it is soft, the contribution will belong to the soft factor (Fig. 2(d)). This
demonstrated that the factorization argument is very powerful tool to study these physics.

However, the above argument does not work for the azimuthal dependent cross section
terms at sub-leading order in Ph⊥/Q, where a TMD factorization approach seems not valid,
at least in the present form [11]. More researches are needed along this line.
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